
1
CIS 422/522

CIS 422/522 ©S. Faulk 1

Designing the Module Structure
How do we design to arrive at desired
qualities?
Address Book exercise

CIS 422/522 ©S. Faulk 2

Architecture Design Process

Building architecture to address business goals:
1. Understand the goals for the system
2. Define the quality requirements
3. Design the architecture

1. Views: which architectural structures should we use?
(goals<->architectural structures<->representation)

2. Documentation: how do we communicate design decisions?
3. Design: how do we decompose the system?

4. Evaluate the architecture (is it a good design?)

2
CIS 422/522

CIS 422/522 ©S. Faulk 3

Which structures should we use?

• Choice of structure depends the specific design goals
– Compare to architectural blueprints

• Choose minimal set of structures that
– Make key design issues visible
– Communicate key design decisions

• Which views would be useful for Address Book?

Structure Components Interfaces Relationships

Calls Structure Programs
(methods,
services)

Program interface
and parameter
declarations

Invokes with
parameters
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program
(process, thread,
task)

Scheduling and
synchronization
constraints

Runs-concurrently-
with, excludes,
precedes

CIS 422/522 ©S. Faulk 4

Important project qualities?

Behavioral (observable)
• Performance
• Security
• Availability
• Reliability
• Usability

Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.

Developmental Qualities
• Modifiability(ease of change)
• Portability
• Reusability
• Ease of integration
• Understandability
• Extensibility (extend/contract)
• Provide independent work

assignments

Properties resulting from the
properties components,
connectors and interfaces that
exist at design time whether or
not they have any distinct run-
time manifestation.

3
CIS 422/522

CIS 422/522 ©S. Faulk 5

Some Key Architectural Structures

• Module Structure*
– Decomposition of the system into work assignments or

information hiding modules
– Most influential design time structure

• Modifiability, work assignments, maintainability, reusability,
understandability, etc.

• Uses Structure
– Determine which modules may use one another’s services
– Determines subsetability, ease of integration (e.g. for

increments)
• Process Structure

– Decomposition of the runtime code into threads of control
– Determines potential concurrency, real-time behavior

CIS 422/522 ©S. Faulk 6

The Module Structure

4
CIS 422/522

CIS 422/522 ©S. Faulk 7

Modularization

• For any large, complex system, must divide
the coding into work assignments (WBS)

• Each work assignment is called a “module”
• Properties of a “good” module structure

– Parts can be designed independently
– Parts can be tested independently
– Parts can be changed independently
– Integration goes smoothly

CIS 422/522 ©S. Faulk 8

Modularization Goals

• Reduces complexity, improves manageability
• Coding

– Can write modules with little knowledge of other modules
– Replace modules without reassembling the whole system

• Managerial
– Allows concurrent development
– Avoids “Mythical Man Month” effect (“adding people to a late

software project makes it later”)
• Flexibility/Maintainability

– Anticipated changes affect only a small number of modules
– Can calculate the impact and cost of change

• Review/communicate
– Can understand or review the system one module at a time

5
CIS 422/522

CIS 422/522 ©S. Faulk 9

Notional Modules

Problem

Interface

Encapsulated

Interface

Encapsulated Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

CIS 422/522 ©S. Faulk 10

What is a module?

• Concept due to David Parnas (conceptual basis for
objects)

• A module is characterized by two things:
– Its interface: services that the module provides to other parts

of the systems
– Its secrets: what the module hides (encapsulates).

Design/implementation decisions that other parts of the
system should not depend on

• Modules are abstract, design-time entities
– Modules are “black boxes” – specifies the visible properties

but not the implementation
– May, or may not, directly correspond to programming

components like classes/objects
• E.g., one module may be implemented by several objects

6
CIS 422/522

CIS 422/522 ©S. Faulk 11

A Simple Module

• A simple integer stack
– push: push integer on stack top
– pop: remove top element
– top: get value of top element

• What information is on the
interface?

• What are the secrets?
• What information is

missing?
• Why is this an abstraction?

stack
int top()

push(int)

pop()

CIS 422/522 ©S. Faulk 12

A Simple Module

• A simple integer stack
• The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.
– push: push integer on stack top
– pop: remove top element
– top: get value of top element

• The secrets (encapsulated) any
details that might change from one
implementation to another
– Data structures, algorithms
– Details of class/object structure

• A module spec is abstract:
describes the services provided but
allows many possible
implementations

• Note: a real spec needs much more
than this (discuss later)

stack
int top()

push(int)

pop()

7
CIS 422/522

CIS 422/522 ©S. Faulk 13

Why these properties?

Module Implementer
• The specification tells me

exactly what capabilities my
module must provide to users

• I am free to implement it any
way I want to

• I am free to change the
implementation if needed as
long as I don’t change the
interface

Module User
• The specification tells me how

to use the module’s services
correctly

• I do not need to know anything
about the implementation
details to write my code

• If the implementation changes,
my code stays the same

Key idea: the abstract interface specification defines
a contract between a module’s developer and its users
that allows each to proceed independently

CIS 422/522 ©S. Faulk 14

Is a module a class/object?

• The programming language concepts of classes and
objects are based on Parnas’ concept of modules

• To separate design-time concerns from coding
issues, however, they are not the same thing
– A module must be a work assignment at design time, does

not dictate run-time structures
– Coder free to implement with a different class structure as

long as the interface capabilities are provided
– Coder free to make changes as long as the interface does

not change
• In simple cases, we will often implement each

module as a class/object

8
CIS 422/522

CIS 422/522 ©S. Faulk 15

Notional Modules

Problem

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Users

Creator

Contract

CIS 422/522 ©S. Faulk 16

Module Hierarchy
Problem

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

? relation

Leaf Modules =
Work

assignments

9
CIS 422/522

CIS 422/522 ©S. Faulk 17

Decomposition Strategies Differ

• How do we develop this structure so that the leaf
modules make independent work assignments?

• Many ways to decompose hierarchically
– Functional: each module is a function
– Pipes and Filters: each module is a step in a chain of

processing
– Transactional: data transforming components
– OOD: use case driven development

• Different approaches result in different kinds of
dependencies

CIS 422/522 ©S. Faulk 18

Use Case Driven OO Process

• Address book design: in-class exercise
• Requirements
• Problem Analysis

– Identify use cases from requirements
– Identify domain classes operationalizing use cases (apply

heuristics)
• OO Design (refinement)

– Allocate responsibilities among classes
• CRC Cards (Class-Responsibility-Collaboration)

– Identify object interactions supporting use cases
• Sequence or Interaction Diagram for each scenario

– Identify supporting classes (& associations)
• Design Class Diagram, relations

• Detailed Design
– Design class interfaces (class attributes and services)

10
CIS 422/522

CIS 422/522 ©S. Faulk 19

Decomposition Heuristics

• Heuristics: suppose we create objects by …
– Underline the nouns
– Identify causal agents
– Identify coherent services
– Identify real-world items
– Identify physical devices
– Identify essential abstractions
– Identify transactions
– Identify persistent information
– Identify visual elements
– Identify control elements
– Execute scenarios

CIS 422/522 ©S. Faulk 20

Use Case Driven OO Process

• Address book design: in-class exercise
• Requirements
• Problem Analysis

– Identify use cases from requirements
– Identify domain classes operationalizing

use cases (apply heuristics)
• OO Design (refinement)

– Allocate responsibilities among classes
– Identify object interactions supporting use

cases
– Identify supporting classes (&

associations)
• Detailed Design

– Design class interfaces (class attributes
and services)

11
CIS 422/522

CIS 422/522 ©S. Faulk 21

Address Book Design Exercise

• Is this a good design?
– Walk through the handout to understand how the

design is derived
• Understand how use-case-driven OO design works

– Walk through the design’s class diagram and UML
class specifications to understand the structure
and function of the design

– Discuss the good and bad points of the design to
arrive a team judgment

– Justify your answer: what is good about it (or bad)
and why? What is the role of the MVC pattern?

CIS 422/522 ©S. Faulk 22

Lessons

• Without quality requirements there is no basis
for choosing between designs
– i.e., we have no measure for “good”

12
CIS 422/522

CIS 422/522 ©S. Faulk 23

General OO Objectives

• Manage complexity
• Improve maintainability
• Improve stakeholder communication
• Improve productivity
• Improve reuse
• Provide unified development model

(requirements to code)

CIS 422/522 ©S. Faulk 24

General OO Principles

• Principles provided to support goals
• Abstraction and Problem modeling

– Development in terms of problem domain
– Supports communication, productivity

• Generalization/Specialization (type of abstraction)
– Inheritance of shared attributes & Delayed Binding (polymorphism)
– Support for reuse, productivity

• Modularization and Information Hiding
– Supports maintainability, reuse

• Independence (abstract interfaces + IH)
– Classes designed as independent entities
– Supports readability, reuse, maintainability

• Common underlying model
– OO model for analysis, design, and programming
– Supports unified development

13
CIS 422/522

CIS 422/522 ©S. Faulk 25

Additional Design Goals

• Be easy to make the following kinds of change
– Add additional fields to the entries: for example, fields for

someone's email, mobile phone, and business phone
– Ability to edit the name fields at any time while keeping the

associated data
– As the number of entries gets larger, we will want to be able

to search the address book
• Support subsets and extensions

– Produce a simpler version of the address book with only
names and phone #

– Allow user to keep multiple address books of different kinds
(i.e., different fields)

– Allow the user-defined fields
• Given these explicit and implicit goals, is it a good

design?

CIS 422/522 ©S. Faulk 26

Exercise: Address Book OOD

• See the class handout
• Use our general OO objectives (implicit) and

additional design goals
• Is this a good design with respect to those

goals?
– What is good (or bad) about it?

14
CIS 422/522

CIS 422/522 ©S. Faulk 27

Questions?

